
Asynchronous Double DQN Ensemble through Shared Experience Learning
Luckyson Khaidem, Ankit Anand and Alina Vereshchaka

Overview

Current problems:

• Current deep RL algorithms store the experiences of

the agent in a database, a random sample of which

is used every time to train the agent.

• This makes the learning process slow as the agent

needs time to explore the environment and collect

enough samples.

Our approach:

• We propose a deep RL framework where instead of

one agent we spawn multiple instances of the

environment and in each instance there is an agent

learning to navigate in the environment independently

of other agents.

• All the agents store their experiences in a shared

database which allows them to learn from the

experiences of other agents. This in turn should

expedite the learning process.

Methodology 

We propose the deep RL framework that is built on top on

DDQN. There is series of ‘n’ agents each running

independent from each other. The replay memory is the

shared database of experiences. Each agent learns on a

mini-batch from the replay memory.

References
• Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with

double q-learning. In Thirtieth AAAI conference on artificial

intelligence 2016 Mar 2.

• CSE 4/510 Reinforcement Learning Course lecture slides

Contacts: {luckyson, aanand8}@buffalo.edu

Action at is sampled from the policy π0 and the next state

st+1is chosen based on the transition probability

distribution P(st+1|st, at).

Our Solution
Deep reinforcement learning uses deep learning in

reinforcement learning (RL) algorithms to solve

problems that otherwise can’t be solved using

conventional RL methods. We propose a variation of

deep RL algorithm wherein we use multiple

instances of deep reinforcement learning agents

that learn from each others experiences, that

increase the learning speed. We have tested our

model against 3 state-of-the-art deep RL algorithms

(DQN, Double DQN, Actor-Critic) on two OpenAI

environments (Cartpole and Acrobot).

Markov decision process (MDP), defined by the tuple ⟨s,

a, o, P, r⟩, where

• s ∈ S denotes states, describing the possible

configurations of all agents;

• a ∈ A denotes actions, which can be discrete or

continuous;

• P: S x A x S → R is the states transition probability

distribution, where states evolve according to the

stochastic dynamics p(st+1|st,at);

• O is a set of observations for each agents;

• r: S → R is the reward function;

Q-Value – Q-value of an action in a particular state tells

us how good that action is in that particular state.

Our goal

Develop a novel deep reinforcement learning

framework that leverages the predictive

performance of ensemble learning techniques.

The proposed framework consists of multiple

independent DDQN/DQN agents that learn from

each other by sharing experiences.
Double Deep Q-network (DDQN)

DDQN is an improved version of DQN, that

approximates the Q-values using two neural networks

which are trained independently and then decides the

action using epsilon greedy policy.

Conclusion

As the result, we have showed that our proposed

asynchronous structure with a shared replay memory

between multiple agents expedites the learning

process as they can explore the environment much

faster. In particular, a fast learning rate is shown in

Cartpole environment. As a future study, this work can

be extended to much complex environments.

Results

• Acrobat system has two robotic arms or links

connected by two joints

• The goal is to swing the links such that the

bottom of the lower robotic arm is raised

upward beyond a particular height.

• The agent is rewarded -1 for every discrete

time step elapsed.

• A cart with a pole attached to it

• The cart is movable left and right

along the x-axis by applying a unit

amount of force in either sides

• Action space: [-1,1]

Case Study: Cartpole

We test our framework on two OpenAI gym

environments – (i) Cartpole (ii) Acrobot against three

deep RL algorithms.

Performance among 4 agents

Comparing ADDQN and ADQN against 3 Deep RL algorithms

Case Study: Acrobot-v1

Performance among 4 agents

Comparing ADDQN and ADQN against 3 Deep RL algorithms


